If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5c^2=-(-2c^2)-(-6^2)
We move all terms to the left:
5c^2-(-(-2c^2)-(-6^2))=0
We calculate terms in parentheses: -(-(-2c^2)-(-6^2)), so:We get rid of parentheses
-(-2c^2)-(-6^2)
We add all the numbers together, and all the variables
-(-2c^2)+36
We get rid of parentheses
2c^2+36
Back to the equation:
-(2c^2+36)
5c^2-2c^2-36=0
We add all the numbers together, and all the variables
3c^2-36=0
a = 3; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·3·(-36)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*3}=\frac{0-12\sqrt{3}}{6} =-\frac{12\sqrt{3}}{6} =-2\sqrt{3} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*3}=\frac{0+12\sqrt{3}}{6} =\frac{12\sqrt{3}}{6} =2\sqrt{3} $
| 0.6x+x=925 | | X-8=-3x=8 | | X-8=-3x=12 | | 4y+5=4y+5/2 | | 9+4h=57 | | 3125^x+5=25^3x+4 | | 5(7-d)-1=3(d-5)-15 | | 3(x-3)=8x+4 | | 5(y-6)-10y=18 | | 3(5x-8)=13 | | 64x^2-129x+64=0 | | 2x+1/4=2x-4 | | 7=x/2+6 | | 4(c+11)=56 | | 9(t-3)+6=t+19 | | 4(3a-4)=10+8 | | 4(2x-2)+2=10 | | 4x+1=3x+2/3 | | 13=y-1/6 | | k+19=4(k-1)-10 | | 9+7x=4x-3 | | 4(3x-4)=10x+6 | | 9x-21=3x+15 | | 6(x+5)+10=27 | | 10(5x-10)=13 | | 2x+3=x+3/2 | | 4-8a=92 | | 14=x/3+5 | | 9(z-3)+6=3(z+3)+6 | | 59a+4)=10a+9 | | 6x-17=3x+16 | | 7x+2(4x-2)=27 |